Mean and standard deviation

(a) From air: mean 2.310035 g, standard dev 0.000134 g, standard error 0.000067 g
From NO: mean 2.300078 g, standard dev 0.001819 g, standard error 0.000910 g

(b) The difference in mean is 0.009958 g and assuming independence the standard
error of the difference is estimated to be 0.000912 g, so the difference is over 10
standard errors. There is therefore a systematic difference.

The most likely reason for the difference is that air with the oxygen, water and CO,
removed still contains a small amount of inert gases, mainly argon, which will be
absent from nitrogen produced from NO. This was how Ar was discovered.

The relevant sums rounded to 6 figures are
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0.0104373. The first formula relies on the difference between two large numbers,
which 6 figure precision is not capable of resolving.
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(b) g(s)=Eexp(sT) = mTexp((s —o)t)dt = O (s< )

3. (a) g(0)=E(exp(0))=E(1)= .[p(t)dt =1 where the integral covers the whole space.
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4, (a) If the random variables are independent their joint density is of the form
p(x,y)=p,(x)p,(y), hence the mgf of X+Yis
E(exp(s(X +Y)) = [[ p,(x)p, (y)exp(s(x + y))dxdy .
Since the domain of integration is a rectangle, i.e. the limits on x and y are constants,
the integral is separable, E(exp(s(X +Y)))= Ipl (x)exp(sx)de‘pz(y)exp(sy)dy = f(s)g(s)
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(b) The mgf of the time to the second collision is f(s)g(s)= ( > (s<o).
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(c) Using the result of (a) the mgf of the sum is g(s) :exp(s(u1 +1, )+ 58 (Gf +c5§)> ,
which is the mgf of a normal distribution with mean (p.l +u2) and variance
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Propagation of errors

1. (@) X=x+¢, and y = f(x) so the experimental value is
Y =f(X)=f(x+¢g,)=y+f'(x)e, +ole,), hence ¢, = f'(x)e, +ole,) and to first order
o, =Fg, = (f'(x))2 Eel = (j"(x))2 o2, or equivalently o, =|f'(x)
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(b) AG°=4009 J mol™ and ©,,. =|-—
AG

c,.

o, =13 Jmol™.

2. (a) Mean 0.19521, standard error 0.00035.
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and the standard deviation is 0.00027.

3. (a) The concentrationis c=n/V =0.1000 M so we need to use the propagation of
errors for two variables.
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without knowing k, but we can calculate the relative error %:E%z 0.062.
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c=47.9 uM and o, =5.5 pM.
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or equivalently A—’;: ~+—-,50 A=10.1mS m” with an estimated standard
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deviation of 1.65%. (Note the standard A level method of handling errors, i.e. adding
relative errors for multiplication and division would give an estimate of 2.7%, which
is safe but over-conservative). The assumption that errors in k and c are
independent is questionable, as errors in making up the solution will lead to errors in
conductivity, however these errors are likely to be in the same direction and so
cancel out. Introducing a correlation coefficient r for this error would give
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correlation coefficient of 1 would give a reduced error of 0.9%.

From the Beer Lambertlaw c=A/¢/ . Hence
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c./c=4.8% so 6. =35uM.

(i) The fundamental transition is from V=0 to 1 and has wavenumber

®, , =0, —2m,x, and the first overtone is from 0 to 2 and therefore has

wavenumber ®,, , =2®, —6®,x,. We can therefore calculate the two required
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Hence &, =2987.0 cm™ with an error of 0.3 cm™, and @,x, =51.0 cm™ with an
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error of 0.1 cm™
(i) The dissociation wavenumber of a Morse oscillator is given by
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i.e. D, = 43736 cm™* with an error of 87 cm™

This is likely to be an underestimate because the Morse formula will not be accurate
all the way from the lowest levels to the dissociation limit. We can only estimate
statistical (random) errors by this method, not systematic errors inherent in the
method.
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(b) The data come from an undergraduate experiment. The concentration of

complex can be obtained from the Beer Lambert law as c=A/&/. From this the

concentration of unbound iron and salicylate can be determined, e.g.

[S Iy =[S7),,, —A/€l . Following the hint and denoting [S'],., =S and [Fe*'] , =F
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of relative errors, and denoting A/e/ =X and SF/X =Y this simplifies to
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For the three experiments the results are as follows
[Fe** Tt / 107 M 7.5 5.0 2.5
[S Tt / 1074 M 2.5 5.0 7.5
A 0.37 0.65 0.40
[FeS* it / 1074 M 2.18 3.82 2.35
[Fe**]free / 107° M 5.32 1.18 0.15
[S Tfree / 1074 M 0.32 1.18 5.15
K/10*Mm™ 1.3 2.8 3.1
1/K/10° M 7.9 3.6 3.2
Gy /10°M 3.5 1.5 3.1
o /K 45% 41% 96%
o, /10*M™ 0.6 1.1 3.0

The errors are obviously too large to use the propagation of errors formula, the
result is very sensitive to the concentration of the most dilute ingredient because it
has to be calculated by subtraction.

(a) The first equation simply follows from a Taylor expansion of .
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because of the frequent occurrence of the ratio —2 in this equation it is convenient
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to use the degree of dissociation, which contains this ratio, and the relative errors:
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Substituting for the variance and covariance,
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To find d—K we need to solve for the degree of dissociation a =2—"(‘/1+4c/Ka —1),
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of simplification this becomes
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(iii) Using the method outlined above the acid dissociation constant is 1.78x10™> with

a standard deviation of 1.5x107°. The correlation coefficient is 0.26, i.e. x and c are
positively correlated, as expected.




